BAAI/BGE Reranker v2 M3 vs Jina Reranker v2 Base Multilingual

Detailed comparison between BAAI/BGE Reranker v2 M3 and Jina Reranker v2 Base Multilingual. See which reranker best meets your accuracy and performance needs.

Model Comparison

BAAI/BGE Reranker v2 M3 takes the lead.

Both BAAI/BGE Reranker v2 M3 and Jina Reranker v2 Base Multilingual are powerful reranking models designed to improve retrieval quality in RAG applications. However, their performance characteristics differ in important ways.

Why BAAI/BGE Reranker v2 M3:

  • BAAI/BGE Reranker v2 M3 has 133 higher ELO rating
  • BAAI/BGE Reranker v2 M3 delivers better accuracy (nDCG@10: 0.686 vs 0.671)
  • Jina Reranker v2 Base Multilingual is 480ms faster on average

Overview

Key metrics

ELO Rating

Overall ranking quality

BAAI/BGE Reranker v2 M3

1468

Jina Reranker v2 Base Multilingual

1335

Win Rate

Head-to-head performance

BAAI/BGE Reranker v2 M3

33.0%

Jina Reranker v2 Base Multilingual

37.8%

Accuracy (nDCG@10)

Ranking quality metric

BAAI/BGE Reranker v2 M3

0.686

Jina Reranker v2 Base Multilingual

0.671

Average Latency

Response time

BAAI/BGE Reranker v2 M3

1891ms

Jina Reranker v2 Base Multilingual

1411ms

Visual Performance Analysis

Performance

ELO Rating Comparison

Win/Loss/Tie Breakdown

Accuracy Across Datasets (nDCG@10)

Latency Distribution (ms)

Breakdown

How the models stack up

MetricBAAI/BGE Reranker v2 M3Jina Reranker v2 Base MultilingualDescription
Overall Performance
ELO Rating
1468
1335
Overall ranking quality based on pairwise comparisons
Win Rate
33.0%
37.8%
Percentage of comparisons won against other models
Pricing & Availability
Price per 1M tokens
$0.020
$0.045
Cost per million tokens processed
Release Date
2023-09-15
2024-06-25
Model release date
Accuracy Metrics
Avg nDCG@10
0.686
0.671
Normalized discounted cumulative gain at position 10
Performance Metrics
Avg Latency
1891ms
1411ms
Average response time across all datasets

Dataset Performance

By field

Comprehensive comparison of accuracy metrics (nDCG, Recall) and latency percentiles for each benchmark dataset.

FiQa

MetricBAAI/BGE Reranker v2 M3Jina Reranker v2 Base MultilingualDescription
Accuracy Metrics
nDCG@5
0.112
0.112
Ranking quality at top 5 results
nDCG@10
0.120
0.121
Ranking quality at top 10 results
Recall@5
0.105
0.105
% of relevant docs in top 5
Recall@10
0.130
0.130
% of relevant docs in top 10
Latency Metrics
Mean
1309ms
2294ms
Average response time
P50
1316ms
1949ms
50th percentile (median)
P90
1744ms
4906ms
90th percentile

PG

MetricBAAI/BGE Reranker v2 M3Jina Reranker v2 Base MultilingualDescription
Accuracy Metrics
Latency Metrics
Mean
2457ms
994ms
Average response time
P50
1019ms
839ms
50th percentile (median)
P90
1469ms
1436ms
90th percentile

business reports

MetricBAAI/BGE Reranker v2 M3Jina Reranker v2 Base MultilingualDescription
Accuracy Metrics
Latency Metrics
Mean
1143ms
2191ms
Average response time
P50
1106ms
1237ms
50th percentile (median)
P90
1641ms
5520ms
90th percentile

MSMARCO

MetricBAAI/BGE Reranker v2 M3Jina Reranker v2 Base MultilingualDescription
Accuracy Metrics
nDCG@5
0.985
0.985
Ranking quality at top 5 results
nDCG@10
0.985
0.985
Ranking quality at top 10 results
Recall@5
1.000
1.000
% of relevant docs in top 5
Recall@10
1.000
1.000
% of relevant docs in top 10
Latency Metrics
Mean
2176ms
1100ms
Average response time
P50
812ms
1023ms
50th percentile (median)
P90
980ms
1642ms
90th percentile

DBPedia

MetricBAAI/BGE Reranker v2 M3Jina Reranker v2 Base MultilingualDescription
Accuracy Metrics
nDCG@5
0.715
0.677
Ranking quality at top 5 results
nDCG@10
0.778
0.744
Ranking quality at top 10 results
Recall@5
0.063
0.064
% of relevant docs in top 5
Recall@10
0.106
0.106
% of relevant docs in top 10
Latency Metrics
Mean
1332ms
763ms
Average response time
P50
831ms
796ms
50th percentile (median)
P90
1455ms
1021ms
90th percentile

Explore More

Compare more rerankers

See how all reranking models stack up. Compare Cohere, Jina AI, Voyage, ZeRank, and more. View comprehensive benchmarks, compare performance metrics, and find the perfect reranker for your RAG application.