Cohere Embed v3 vs Voyage 4

Detailed comparison between Cohere Embed v3 and Voyage 4. See which embedding best meets your accuracy and performance needs. If you want to compare these models on your data, try Agentset.

Model Comparison

Voyage 4 takes the lead.

Both Cohere Embed v3 and Voyage 4 are powerful embedding models designed to improve retrieval quality in RAG applications. However, their performance characteristics differ in important ways.

Why Voyage 4:

  • Voyage 4 has 118 higher ELO rating
  • Voyage 4 delivers better accuracy (nDCG@10: 0.859 vs 0.686)
  • Voyage 4 has a 20.7% higher win rate

Overview

Key metrics

ELO Rating

Overall ranking quality

Cohere Embed v3

1488

Voyage 4

1606

Win Rate

Head-to-head performance

Cohere Embed v3

41.0%

Voyage 4

61.7%

Accuracy (nDCG@10)

Ranking quality metric

Cohere Embed v3

0.686

Voyage 4

0.859

Average Latency

Response time

Cohere Embed v3

7ms

Voyage 4

17ms

Embedding Models Are Just One Piece of RAG

Agentset gives you a managed RAG pipeline with the top-ranked models and best practices baked in. No infrastructure to maintain, no embeddings to manage.

Trusted by teams building production RAG applications

5M+
Documents
1,500+
Teams
99.9%
Uptime

Visual Performance Analysis

Performance

ELO Rating Comparison

Win/Loss/Tie Breakdown

Accuracy Across Datasets (nDCG@10)

Latency Distribution (ms)

Breakdown

How the models stack up

MetricCohere Embed v3Voyage 4Description
Overall Performance
ELO Rating
1488
1606
Overall ranking quality based on pairwise comparisons
Win Rate
41.0%
61.7%
Percentage of comparisons won against other models
Pricing & Availability
Price per 1M tokens
$0.100
$0.060
Cost per million tokens processed
Dimensions
1024
1024
Vector embedding dimensions (lower is more efficient)
Release Date
2024-02-07
2026-01-15
Model release date
Accuracy Metrics
Avg nDCG@10
0.686
0.859
Normalized discounted cumulative gain at position 10
Performance Metrics
Avg Latency
7ms
17ms
Average response time across all datasets

Build RAG in Minutes, Not Months

Agentset gives you a complete RAG API with top-ranked embedding models and smart retrieval built in. Upload your data, call the API, and get accurate results from day one.

import { Agentset } from "agentset";

const agentset = new Agentset();
const ns = agentset.namespace("ns_1234");

const results = await ns.search(
  "What is multi-head attention?"
);

for (const result of results) {
  console.log(result.text);
}

Dataset Performance

By field

Comprehensive comparison of accuracy metrics (nDCG, Recall) and latency percentiles for each benchmark dataset.

PG

MetricCohere Embed v3Voyage 4Description
Accuracy Metrics
Latency Metrics
Mean
6ms
17ms
Average response time
P50
6ms
17ms
50th percentile (median)
P90
7ms
19ms
90th percentile

business reports

MetricCohere Embed v3Voyage 4Description
Accuracy Metrics
Latency Metrics
Mean
6ms
15ms
Average response time
P50
6ms
15ms
50th percentile (median)
P90
7ms
17ms
90th percentile

DBPedia

MetricCohere Embed v3Voyage 4Description
Accuracy Metrics
nDCG@5
0.634
0.815
Ranking quality at top 5 results
nDCG@10
0.619
0.811
Ranking quality at top 10 results
Recall@5
0.219
0.062
% of relevant docs in top 5
Recall@10
0.353
0.122
% of relevant docs in top 10
Latency Metrics
Mean
6ms
13ms
Average response time
P50
6ms
13ms
50th percentile (median)
P90
7ms
15ms
90th percentile

FiQa

MetricCohere Embed v3Voyage 4Description
Accuracy Metrics
nDCG@5
0.641
0.873
Ranking quality at top 5 results
nDCG@10
0.650
0.859
Ranking quality at top 10 results
Recall@5
0.639
0.763
% of relevant docs in top 5
Recall@10
0.678
0.840
% of relevant docs in top 10
Latency Metrics
Mean
7ms
14ms
Average response time
P50
6ms
14ms
50th percentile (median)
P90
8ms
15ms
90th percentile

SciFact

MetricCohere Embed v3Voyage 4Description
Accuracy Metrics
nDCG@5
0.729
0.737
Ranking quality at top 5 results
nDCG@10
0.769
0.758
Ranking quality at top 10 results
Recall@5
0.788
0.804
% of relevant docs in top 5
Recall@10
0.900
0.878
% of relevant docs in top 10
Latency Metrics
Mean
8ms
16ms
Average response time
P50
8ms
16ms
50th percentile (median)
P90
9ms
18ms
90th percentile

MSMARCO

MetricCohere Embed v3Voyage 4Description
Accuracy Metrics
nDCG@5
1.000
0.941
Ranking quality at top 5 results
nDCG@10
0.996
0.931
Ranking quality at top 10 results
Recall@5
0.123
0.123
% of relevant docs in top 5
Recall@10
0.218
0.221
% of relevant docs in top 10
Latency Metrics
Mean
6ms
13ms
Average response time
P50
6ms
13ms
50th percentile (median)
P90
7ms
14ms
90th percentile

ARCD

MetricCohere Embed v3Voyage 4Description
Accuracy Metrics
nDCG@5
0.349
0.936
Ranking quality at top 5 results
nDCG@10
0.398
0.936
Ranking quality at top 10 results
Recall@5
0.380
1.000
% of relevant docs in top 5
Recall@10
0.520
1.000
% of relevant docs in top 10
Latency Metrics
Mean
11ms
28ms
Average response time
P50
11ms
28ms
50th percentile (median)
P90
12ms
30ms
90th percentile

Explore More

Compare more embeddings

See how all embedding models stack up. Compare OpenAI, Cohere, Jina AI, Voyage, and more. View comprehensive benchmarks, compare performance metrics, and find the perfect embedding for your RAG application.