LanceDB vs Qdrant

Compare deployment options, cost efficiency, and features to choose the right vector database for your application.

Database Comparison

LanceDB takes the lead.

Both LanceDB and Qdrant are powerful vector databases designed for efficient similarity search and storage. However, their deployment options and features differ in important ways.

Why LanceDB:

  • LanceDB ranks higher overall
  • LanceDB is more cost-effective
  • LanceDB has 3 more strengths

LanceDB

LanceDB is an open-source, AI-native multimodal lakehouse designed for billion-scale vector search. Built on the Lance columnar format, it combines embedded simplicity with cloud-scale performance. LanceDB's disk-based architecture with compute-storage separation enables up to 100x cost savings compared to memory-based solutions while supporting multimodal data (text, images, video, audio).

Deployment: Embedded/Local, Self-Hosted, Managed Cloud (LanceDB Cloud)
Cost: OSS: Free; Cloud: usage-based with $100 free credits; Enterprise: custom pricing
License: Apache 2.0
View full details

Qdrant

Qdrant is an open-source vector database available as both a managed cloud service and a self-hosted solution. It offers strong HNSW performance, flexible deployment, and predictable cost structures, making it suitable for both startups and large-scale RAG workloads.

Deployment: Self-Hosted, Managed Cloud
Cost: Starts ~$0.014/hour for smallest node
License: Apache 2.0
View full details

Feature Comparison

Infrastructure & Technical Details

FeatureLanceDBQdrant
DeploymentEmbedded/Local, Self-Hosted, Managed Cloud (LanceDB Cloud)Self-Hosted, Managed Cloud
CostOSS: Free; Cloud: usage-based with $100 free credits; Enterprise: custom pricingStarts ~$0.014/hour for smallest node
LicenseApache 2.0Apache 2.0
Index TypesIVF-PQ, IVF-HNSW-PQ, BTreeHNSW, Sparse (dot similarity)
Cloud ProvidersAWS, Azure, GCP, Any (self-hosted)AWS, Azure, GCP
Regional Flexibilityhighhigh
Strengths1310
Weaknesses95