Qdrant vs Pinecone
Compare deployment options, cost efficiency, and features to choose the right vector database for your application. If you want to compare these models on your data, try Agentset.
Database Comparison
Qdrant takes the lead.
Both Qdrant and Pinecone are powerful vector databases designed for efficient similarity search and storage. However, their deployment options and features differ in important ways.
Why Qdrant:
- Qdrant ranks higher overall
- Qdrant offers more deployment options
- Qdrant is more cost-effective
- Qdrant has more permissive licensing
- Qdrant has 3 more strengths
Vector Databases Are Just One Piece of RAG
Agentset gives you a managed RAG pipeline with the top-ranked models and best practices baked in. No infrastructure to maintain, no vector database to operate.
Trusted by teams building production RAG applications
Qdrant
Qdrant is an open-source vector database available as both a managed cloud service and a self-hosted solution. It offers strong HNSW performance, flexible deployment, and predictable cost structures, making it suitable for both startups and large-scale RAG workloads.
Pinecone
Pinecone is a fully managed, proprietary cloud vector database designed for high-performance RAG pipelines. It abstracts away infrastructure, scaling, replication, and index management. Pinecone is popular among companies building production RAG systems that need predictable latency and fully hosted operations.
Build RAG in Minutes, Not Months
Agentset gives you a complete RAG API with fully managed vector storage and retrieval. Upload your data, call the API, and get accurate results from day one.
import { Agentset } from "agentset";
const agentset = new Agentset();
const ns = agentset.namespace("ns_1234");
const results = await ns.search(
"What is multi-head attention?"
);
for (const result of results) {
console.log(result.text);
}Feature Comparison
Infrastructure & Technical Details
| Feature | Qdrant | Pinecone |
|---|---|---|
| Deployment | Self-Hosted, Managed Cloud | Managed Cloud |
| Cost | Starts ~$0.014/hour for smallest node | Storage: $0.33/GB/mo; Write Units: $4/million; Read Units: $16/million; Minimum $50/mo |
| License | Apache 2.0 | Proprietary |
| Index Types | HNSW, Sparse (dot similarity) | Dense (HNSW-like), Sparse |
| Cloud Providers | AWS, Azure, GCP | AWS, Azure, GCP |
| Regional Flexibility | high | low |
| Strengths | 10 | 7 |
| Weaknesses | 5 | 7 |